Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

TitleAnode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.
Publication TypeJournal Article
Year of Publication2009
AuthorsNevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL, Methé BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR
JournalPLoS One
Volume4
Issue5
Paginatione5628
Date Published2009
ISSN1932-6203
KeywordsAmino Acid Sequence, Bacterial Outer Membrane Proteins, Bioelectric Energy Sources, Biofilms, Cytochromes, Electrodes, Electron Transport, Fumarates, Gene Deletion, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Genetic Complementation Test, Geobacter, Microscopy, Confocal, Molecular Sequence Data, Oligonucleotide Array Sequence Analysis, Oxidation-Reduction, RNA, Messenger, Up-Regulation
Abstract

The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

DOI10.1371/journal.pone.0005628
Alternate JournalPLoS ONE
PubMed ID19461962