Selective progressive response of soil microbial community to wild oat roots.

TitleSelective progressive response of soil microbial community to wild oat roots.
Publication TypeJournal Article
Year of Publication2009
AuthorsDeangelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK
JournalISME J
Volume3
Issue2
Pagination168-78
Date Published2009 Feb
ISSN1751-7370
KeywordsAvena sativa, Bacteria, Biodiversity, Colony Count, Microbial, Microarray Analysis, Oligonucleotide Array Sequence Analysis, Plant Roots, Polymerase Chain Reaction, RNA, Bacterial, RNA, Ribosomal, 16S, Soil Microbiology
Abstract

Roots moving through soil induce physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. The use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies compositional changes reported earlier, including increases in chitinase- and protease-specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change compared with bulk soil in relative abundance for 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA terminal restriction fragment length polymorphism analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared with bulk soil, but then increased in older root zones. Quantitative PCR revealed rhizosphere abundance of beta-Proteobacteria and Actinobacteria at about 10(8) copies of 16S rRNA genes per g soil, with Nitrospira having about 10(5) copies per g soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in functions observed earlier in progressively more mature rhizosphere zones.

DOI10.1038/ismej.2008.103
Alternate JournalISME J
PubMed ID19005498