Title | Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms. |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Ueki T, Nevin KP, Rotaru A-E, Wang L-Y, Ward JE, Woodard TL, Lovley DR |
Journal | mBio |
Volume | 9 |
Issue | 4 |
Date Published | 2018 Jul 10 |
ISSN | 2150-7511 |
Keywords | Cytochromes, Electron Transport, Ferric Compounds, Fimbriae, Bacterial, Geobacter, Microbial Interactions, Oxidation-Reduction |
Abstract | Cytochrome-to-cytochrome electron transfer and electron transfer along conduits of multiple extracellular magnetite grains are often proposed as strategies for direct interspecies electron transfer (DIET) that do not require electrically conductive pili (e-pili). However, physical evidence for these proposed DIET mechanisms has been lacking. To investigate these possibilities further, we constructed strain Aro-5, in which the wild-type pilin gene was replaced with the pilin gene that was previously shown to yield poorly conductive pili in strain Aro-5. strain Aro-5 did not reduce Fe(III) oxide and produced only low current densities, phenotypes consistent with expression of poorly conductive pili. Like strain Aro-5, strain Aro-5 displayed abundant outer surface cytochromes. Cocultures initiated with wild-type as the electron-donating strain and strain Aro-5 as the electron-accepting strain grew via DIET. However, Aro-5/ wild-type cocultures did not. Cocultures initiated with the Aro-5 strains of both species grew only when amended with granular activated carbon (GAC), a conductive material known to be a conduit for DIET. Magnetite could not substitute for GAC. The inability of the two Aro-5 strains to adapt for DIET in the absence of GAC suggests that there are physical constraints on establishing DIET solely through cytochrome-to-cytochrome electron transfer or along chains of magnetite. The finding that DIET is possible with electron-accepting partners that lack highly conductive pili greatly expands the range of potential electron-accepting partners that might participate in DIET. DIET is thought to be an important mechanism for interspecies electron exchange in natural anaerobic soils and sediments in which methane is either produced or consumed, as well as in some photosynthetic mats and anaerobic digesters converting organic wastes to methane. Understanding the potential mechanisms for DIET will not only aid in modeling carbon and electron flow in these geochemically significant environments but will also be helpful for interpreting meta-omic data from as-yet-uncultured microbes in DIET-based communities and for designing strategies to promote DIET in anaerobic digesters. The results demonstrate the need to develop a better understanding of the diversity of types of e-pili in the microbial world to identify potential electron-donating partners for DIET. Novel methods for recovering as-yet-uncultivated microorganisms capable of DIET in culture will be needed to further evaluate whether DIET is possible without e-pili in the absence of conductive materials such as GAC. |
DOI | 10.1128/mBio.01273-18 |
Alternate Journal | mBio |
PubMed ID | 29991583 |
PubMed Central ID | PMC6050967 |
Department of Microbiology