Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.

TitlePotential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.
Publication TypeJournal Article
Year of Publication2004
AuthorsHolmes DE, Nicoll JS, Bond DR, Lovley DR
JournalAppl Environ Microbiol
Volume70
Issue10
Pagination6023-30
Date Published2004 Oct
ISSN0099-2240
KeywordsBioelectric Energy Sources, Cytochromes, Deltaproteobacteria, Electron Transport, Genes, Bacterial, Geologic Sediments, Microscopy, Electron, Molecular Sequence Data, Phylogeny, RNA, Bacterial, RNA, Ribosomal, 16S, Temperature
Abstract

Previous studies have shown that members of the family Geobacteraceae that attach to the anodes of sediment fuel cells are directly involved in harvesting electricity by oxidizing organic compounds to carbon dioxide and transferring the electrons to the anode. In order to learn more about this process, microorganisms from the anode surface of a marine sediment fuel cell were enriched and isolated with Fe(III) oxide. Two unique marine isolates were recovered, strains A1(T) and A2. They are gram-negative, nonmotile rods, with abundant c-type cytochromes. Phylogenetic analysis of the 16S rRNA, recA, gyrB, fusA, rpoB, and nifD genes indicated that strains A1(T) and A2 represent a unique phylogenetic cluster within the Geobacteraceae. Both strains were able to grow with an electrode serving as the sole electron acceptor and transferred ca. 90% of the electrons available in their organic electron donors to the electrodes. These organisms are the first psychrotolerant members of the Geobacteraceae reported thus far and can grow at temperatures between 4 and 30 degrees C, with an optimum temperature of 22 degrees C. Strains A1(T) and A2 can utilize a wide range of traditional electron acceptors, including all forms of soluble and insoluble Fe(III) tested, anthraquinone 2,6-disulfonate, and S(0). In addition to acetate, both strains can utilize a number of other organic acids, amino acids, long-chain fatty acids, and aromatic compounds to support growth with Fe(III) nitrilotriacetic acid as an electron acceptor. The metabolism of these organisms differs in that only strain A1(T) can use acetoin, ethanol, and hydrogen as electron donors, whereas only strain A2 can use lactate, propionate, and butyrate. The name Geopsychrobacter electrodiphilus gen. nov., sp. nov., is proposed for strains A1(T) and A2, with strain A1(T) (ATCC BAA-880(T); DSM 16401(T); JCM 12469) as the type strain. Strains A1(T) and A2 (ATCC BAA-770; JCM 12470) represent the first organisms recovered from anodes that can effectively couple the oxidation of organic compounds to an electrode. Thus, they may serve as important model organisms for further elucidation of the mechanisms of microbe-electrode electron transfer in sediment fuel cells.

DOI10.1128/AEM.70.10.6023-6030.2004
Alternate JournalAppl. Environ. Microbiol.
PubMed ID15466546